<table>
<thead>
<tr>
<th>項目</th>
<th>内容要旨</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>肝臓特異的G0S2表現が高脂肪摂取誘発インスリン抵抗性ラットにおけるインスリン抵抗性を悪化する(Body)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>菅谷 芳幸</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-03-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://ir.fmu.ac.jp/dspace/handle/123456789/602</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
</tbody>
</table>
論文内容要旨

<table>
<thead>
<tr>
<th>氏名</th>
<th>高木 勝幸</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位論文名</td>
<td>Liver-specific G0S2 expression exacerbates hepatic insulin resistance in high fat induced insulin resistance rats. (肝臓におけるG0S2の過剰発現は、高脂肪酸誘発性インスリン抵抗性モデルラットにおいて肝臓でのインスリン抵抗性を増悪させる）</td>
</tr>
</tbody>
</table>

【目的】G0/G1 switch gene 2 (G0S2) 蛋白は細胞周期に関する蛋白として発見されが、近年は脂肪分解酵素の一つであるadipose triglyceride lipase (ATGL) を抑制する作用が報告され、脂質代謝における調節因子の一つとして注目されている。しかし、G0S2 蛋白の脂質代謝に対する影響については十分解明されていない。本研究ではアデノウイルスでG0S2 蛋白を肝臓に過剰発現させ、肝臓でのG0S2 蛋白がインスリン感受性に及ぼす影響及び作用機序について検討した。

【方法】6週齢、雄、Wistar ラットを通常飼、高脂肪飼（60%）で3週間飼育後、G0S2 蛋白を過剰発現するアデノウイルス（Ad-G0S2）、コントロールウイルス（Ad-GFP）を投与した。通常飼+Ad-GFP 群、通常飼+Ad-G0S2 群、高脂肪飼+Ad-GFP 群、高脂肪飼+Ad-G0S2 群の4群で、アデノウイルス投与1週間後に、0.5g/kg 経静脈的プドウ糖負荷試験と高インスリン正常血糖クランプ検査にて、耐糖能及びインスリン感受性を評価した。高インスリン正常血糖クランプ検査後、肝臓、骨格筋、脂肪組織でインスリンシグナルをウエスタンブロット解析した。

【結果】通常飼群で Ad-G0S2 投与の有無により、体重、空腹時血糖値に有意差は認めなかった。高脂肪飼群でも同様であった。経静脈的プドウ糖負荷試験では、通常飼群で Ad-G0S2 投与により血糖値の有意な変化は認められなかったが、高脂肪飼群ではコントロールと比較して負荷後 15 分の血糖値が 24.9 mg/dl から 28.3 mg/dl と有意に上昇（p<0.05）、耐糖能の悪化が認められた。高インスリン正常血糖クランプ検査では、高脂肪飼+Ad-G0S2 群で、コントロールと比較して、GIR が約 15％有意に減少し、全身のインスリン抵抗性の増悪を認めた。15-G0S は有意な差を認めなかったが、chG0 は約 30％有意に増加し、肝臓でのインスリン抵抗性の悪化を認めた。Akt のセリニン酸化については、高脂肪飼+Ad-G0S2 群の肝臓でのみコントロールと比較して有意な減少を認め、通常飼群の肝臓、骨格筋、白色脂肪組織、高脂肪飼群の骨格筋、白色脂肪組織では有意な変化は認めず、高インスリン正常血糖クランプ検査の結果と一致していた。Oli red 0 染色法にて脂肪肝の程度を評価したところ、通常飼群では Ad-G0S2 投与の有無で脂肪沈着に有意な差を認めなかったが、高脂肪飼+Ad-G0S2 群ではコントロールと比較して 2.5 倍の脂肪沈着増加を認め、脂肪肝の悪化を認めた。

【結論】高脂肪飼によるインスリン抵抗性状態では、肝臓でのG0S2蛋白の発現は、脂肪肝を増悪させ、肝臓でのインスリン抵抗性を増悪させることが明らかになった。脂肪肝を伴ったインスリン抵抗性状態では、G0S2がインスリン抵抗性の増悪因子となる可能性が示唆された。

※日本語で記載すること。1200字以内にまとめる。