<table>
<thead>
<tr>
<th>Title</th>
<th>A study of ING2 structure and function in regulation of gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>大河内 千代</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-09-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://ir.fmu.ac.jp/dspace/handle/123456789/584</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
</tbody>
</table>
論文内容要旨

<table>
<thead>
<tr>
<th>氏名</th>
<th>大河内 千代</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位論文題名</td>
<td>A study of ING2 structure and function in regulation of gene expression （遺伝子発現制御に関与する ING2 遺伝子の構造と機能解析）</td>
</tr>
</tbody>
</table>

Inhibitor of Growth 2 (ING2) 遺伝子は、大腸癌で発現が亢進しており、matrix metalloproteinase 13 (MMP13) の発現を誘導することで、癌細胞の浸潤拡散に関与していることを報告してきた。近年、ING2 遺伝子は、クロマチンリモデリングに関与していることが報告され、様々な遺伝子の発現を制御していると考えられている。われわれは、ING2 遺伝子の関連遺伝子として MMP13 と plasminogen activator inhibitor 1 (PAI-1) を見出した。本研究では、ING2 遺伝子のタンパク構造の生物学的意義を MMP13 と PAI-1 遺伝子の発現変化を調べることによって検索した。ING2 の PHD ドメインとその周囲のミスセンス変異を加え、MMP13 と PAI-1 の発現を調べた。PHD ドメイン中のコード 218 に変異を加えると著しく MMP13 と PAI-1 の発現は低下した。一方、コード 224 のミスセンス変異では、これらの遺伝子発現は亢進していた。さらに、ING2 の構造変化に伴う MMP13 と PAI-1 の発現変化を調べ、HDAC1, mSin3A, sap30 との結合との関連を解析した。ING2 の C 末端を含む PHD ドメインの欠失により、MMP13 と PAI-1 の遺伝子発現が消失してしまった。N 末端のみの欠失は、これらの遺伝子発現にほとんど影響を及ぼさなかった。今回、ING2 と HDAC1 を過剰発現させた 293 細胞とコントロール細胞を用いて、cDNA マイクロアレイで遺伝子発現変化を調べた。MMP13 と PAI-1 以外に、新たに 8 遺伝子が ING2 の標的遺伝子を見出した。ING2 と HDAC1 を共に過剰発現させると、ING2 のみで発現が亢進していったこれら 8 個の遺伝子のうち、3 遺伝子は発現亢進に働いていたが、4 遺伝子で発現が抑制されていた。

本研究により、ING2 の機能において HDAC1, mSin3A, sap30 との関与する C 末端を含む PHD ドメインが構造上必要不可欠であることを示唆した。また、ING2 の過剰発現により発現が増加する新たな遺伝子を検出したが、HDAC1 を共発現した場合、発現亢進する遺伝子と低下する遺伝子があり、こうした遺伝子発現制御にはさらなるタンパクの関与が示唆された。

※日本語で記載すること。1200字以内にまとめること。