An evidence-based medicine approach to
the laparoscopic treatment of colorectal cancer

Taisuke Otani1,2, Noriyuki Isohata1, Kensuke Kumamoto3, Shungo Endo1,3, Kenichi Utano1,3, Daiki Nemoto1,3, Masato Aizawa1,3, Alan K Lefor3 and Kazutomo Togashi1

1Department of Coloproctology, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan, 2Department of Surgery, Shinmatsudo Central General Hospital, Chiba, Japan, 3Department of Surgery, Jichi Medical University, Tochigi, Japan

(Received April 12, 2016, accepted June 6, 2016)

Abstract
During the 1990s, laparoscopic resection was established as a treatment for gastrointestinal malignant tumors. A number of randomized controlled trials comparing laparoscopic-assisted colorectal surgery with conventional open colorectal surgery for colon cancer have been conducted. These trials have shown short-term benefits, and the vast majority demonstrated no significant difference in long-term outcomes. Laparoscopic-assisted colorectal surgery is widely performed for the treatment of colon cancer, whereas laparoscopic-assisted colorectal surgery for rectal cancer is less commonly performed. In recent years, there have been an increasing number of reports of laparoscopic-assisted colorectal surgery for rectal cancer, where improving short-term outcomes was shown, but no definitive effect on long-term survival has been shown to date. Randomized controlled trials focusing on long-term survival are currently ongoing.

Key words: colon cancer, rectal cancer, laparoscopic-assisted colorectal surgery

Introduction
Colorectal cancer is the fourth leading cause of cancer-specific mortality worldwide. Laparoscopic-assisted colorectal surgery (LAC) for colon cancer was first reported in 19911. Several Randomized Controlled Trials (RCTs) have shown that LAC for colon cancer has short-term benefits and no difference in long-term outcomes, compared with conventional open colorectal surgery (OC)2-7. In contrast, LAC for rectal cancer still remains controversial due to technical difficulties8. With the ongoing development of medical devices as well as improvements in operative technique, however, the number of LAC performed for rectal cancer has gradually increased. Recent RCTs have provided evidence of LAC for rectal cancer as well3,9-12. In this article, we summarize the current evidence regarding the treatment of CRC, especially laparoscopic surgery, focusing on multi-institutional RCTs.

Methods
To identify papers relevant to our study, we searched major medical databases including MEDLINE, EMBASE, Science Citation Index, and Cochrane Controlled Trial Register from 1990 till the present. The following search terms were used: “laparoscopic surgery” “colorectal cancer” “randomized controlled trial” and all related articles.

Laparoscopic Surgery for Colon Cancer

Short-term outcomes (Table 1)
A number of RCTs comparing LAC with OC for

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Procedure & Outcome \\
\hline
LAC & 1
\hline
OC & 2
\hline
\end{tabular}
\caption{Comparison of short-term outcomes between LAC and OC}
\end{table}
Laparoscopic treatment of colorectal cancer

Colon cancer have been conducted around the world. Previous studies showed that LAC for CRC is associated with low morbidity, fast recovery, short hospital stay and a better quality of life compared to OC in the short-term. Among those studies, the Lacy et al. trial, COST study group trial, COLOR trial and MRC CLASICC trial are particularly well-regarded. These trials all had a large sample size, demonstrating short-term benefits for LAC, compared to OC. In addition, patients undergoing LAC had significantly less blood loss and no significant differences in the number of harvested lymph nodes, anastomotic leak rate, or perioperative mortality and mortality. In spite of a significantly longer operative time, the safety and feasibility of LAC is similar to that of OC. The conversion rate was as high as 11–25% in previous reports, but approximately 5% in more recent studies. These improvements may be due to recent advances in technology as well as laparoscopic technique. Therefore, some recent studies report that LAC had an advantage in short-term outcomes not only for patients over age 75 but also for obese patients.

Long-term outcomes (Table 2)

In 2007, the COST trial reported long-term outcomes for patients with CRC treated by LAC. Patients were followed for a median of seven years. The five-year disease-free survival (LAC 69.2%, OC 68.4%, P = 0.94), five-year overall survival (LAC 76.4%, OC 74.6%, P = 0.93) and overall recurrence rates (LAC 19.4%, OC 21.8%, P = 0.25) were similar between the two groups. In 2008, Lacy et al. also reported long-term outcomes. The median follow-up was 95 months. In the LAC group, there was a tendency toward higher cancer-related survival (P = 0.07, not significant) and overall survival (P = 0.06, not significant). Regression analysis showed that LAC was not independently associated with a reduced risk of tumor recurrence (hazard ratio 0.47, 95% CI: 0.23-0.94), death from a cancer-related cause (0.44, 0.21-0.92) or death from any cause (0.59, 0.35-0.98). In 2009, the COLOR trial reported long-term outcomes after LAC and OC. The median follow-up was 53 months. The combined 3-year disease-free survival (LAC 74.2%, OC 76.2%, P = 0.70) and combined 3-year overall survival (LAC 81.8%, OC 84.2%, P = 0.45) were similar in all stages of disease. These results suggest that the long-term oncological outcomes of LAC are similar to those of OC.

In 2013, a RCT (JCOG0404) with a large co-
hort (529 for LAC, 528 for OC, conversion rate 5.4%), was completed for patients with Stage II and III colon cancer at 30 tertiary centers in Japan. In an interim report, LAC showed impressive short-term outcomes and similar long-term oncological outcomes, compared to OC. LAC is clearly established as a reasonable alternative treatment to OC for patients with CRC.

Transverse colon cancer

Previous studies excluded transverse colon cancer, presumably because of the technical difficulty in laparoscopically resecting the cancers including an extended lymphadenectomy. There have been three reports of laparoscopic-assisted transverse colon resection, supporting its feasibility, since 2007. Kim et al. reported a comparative study on the short-term clinico-pathologic outcomes of LAC (n = 37) vs. OC (n = 50) for transverse colon lesions. They reported that blood loss was significantly less, time to first flatus was shorter and the diet was started earlier in patients who underwent LAC. There were no intergroup differences in the number of harvested lymph nodes. In 2012, Hahn et al. published the long-term results for the laparoscopic-assisted resection of transverse colon cancer in 58 patients, which was the first study to demonstrate long-term oncologic outcomes after LAC for transverse colon cancer. One patient was converted to open surgery. The median follow-up was 40.5 months. There were no local recurrences during the follow-up period. Disease-free survival and overall survival for patients undergoing LAC at five years were 84.6% and 89.3%, respectively. A more recent report shows similar long-term outcomes comparing LAC and OC. LAC for transverse colon cancer is expected to become an established treatment in the future.

Metastatic Colon Cancer

National Cancer Control Network guidelines recommend non-operative treatment for patients with incurable Stage IV CRC without symptoms. On the contrary, other reports advocate the benefits of primary tumor resection as treatment for patients with Stage IV CRC. At present, there is no consensus regarding the effectiveness of palliative primary tumor resection for patients with Stage IV disease. There are few comparative studies of LAC and OC for patients with Stage IV CRC. Law et al. reported a retrospective comparative study of LAC (n = 77) vs. OC (n = 123) in patients with metastatic colorectal cancer. In this study, the mortality rate was significantly lower in patients who underwent LAC (LAC 14%, OC 32%, P = 0.007) and the median hospital stay was significantly shorter (7 days for LAC vs. 8 days for OC, P = 0.005). The operative mortality rate and the survival were similar.

There have been four reports comparing LAC with OC for symptomatic or incurable stage IV CRC since 2012. These studies showed that patients who underwent LAC resumed oral intake significantly earlier and had significantly shorter hospital stays than patients undergoing OC. Two studies reported that LAC was associated with significantly less perioperative mortality and other two studies reported shorter time intervals from surgery to chemotherapy compared to patients undergoing OC. Among the four studies, Hida et al. reported that LAC had significantly better overall survival than that for OC (P = 0.04). These studies indicate that LAC has advantages in the short term and no disadvantages in the long term.

| Table 2. Randomized clinical trials of laparoscopic colon surgery (long-term outcomes) |
|---------------------------------|---|----------------|---|----------------|---|
| Randomized clinical trial | Year | 5 year DFS (%) | p-value | 5 year OS (%) | p-value |
| Lacy55) | 2008 | NA | 0.94 | NA | 0.93 |
| COST54) | 2007 | LAC: 69.2 | 0.19 | LAC: 76.4 | 0.21 |
| *COLOR56) | 2009 | *LAC: 74.2 | *OC: 76.2 | *LAC: 81.8 | *OC: 84.2 |
| Braga51) | 2010 | NA | 0.399 | NA | 0.321 |
| CLASSIC53) | 2010 | LAC: 57.6 | 0.253 | LAC: 55.7 | 0.253 |
| | | OC: 64.0 | | OC: 62.7 | |

DFS, disease free survival; OS, overall survival; LAC, laparoscopic-assisted colorectal surgery; OC, open colorectal surgery; NA, not available; *Data are 3 year.
Recent Topics

Since aging is a significant risk factor for developing CRC, it is likely that we will see more patients with this disease in the future, due to the aging population. Kennedy et al. analyzed data from the American College of Surgeons National Surgical Quality Improvement Program from 2005 to 2008 and evaluated patients over age 65 who underwent either LAC (n = 2,113) or OC (n = 3,801) for colon cancer. They concluded that patients undergoing LAC were generally at lower risk for developing postoperative complications (LAC 16.1% vs. OC 25.4%, P < 0.005). Statistical models controlling for preoperative and operative variables demonstrated that patients with an elevated body mass index (odds ratio [OR] = 1.26), history of chronic obstructive pulmonary disease (OR = 1.63), age over 85 (OR = 1.35), surgery lasting longer than four hours (OR = 1.48), or having undergone an OC (OR = 1.53), have an increased risk for developing postoperative complications.

In recent years, overall outcomes after colon cancer resection have not improved. High ligation with mesenteric lymph node dissection (Japanese D3 lymph node dissection) and European complete mesocolic excision (high ligation) are both based on sound oncologic principles and using both techniques report impressive outcomes as compared with standard operative techniques. West et al. reported, that compared with complete mesocolic excision, specimens resected using the Japanese D3 lymph node dissection technique were significantly shorter (162 vs. 324 mm, P < 0.001), resulting in a smaller number of lymph nodes (median, 18 vs. 32, P < 0.001). The distance from the high tie to the bowel wall (100 vs. 99 mm, P = 0.605) was equivalent, but did not decrease the number of tumor-involved nodes in patients undergoing OC. There was no difference in the number of lymph nodes but a greater distance from the high tie to the bowel wall in LAC specimens when compared with OC specimens. Follow up RCTs are now required to assess the benefit of high tie and extended bowel resection.

Sentinel lymph node mapping has been found to be diagnostically useful in patients with early stage CRC. Zaag et al. analyzed 57 reviews (3,934 patients) and reported that the sentinel lymph node in CRC has an overall sensitivity of 70%. The identification of the sentinel lymph node using infrared laparoscopy was five times better than that with conventional laparoscopy. Regional lymphadenectomy is an integral part of the primary resection in patients with CRC, but in contrast to breast cancer and melanoma, there are few secondary diseases after lymphadenectomy. Therefore, sentinel lymph node mapping has not become widely used in patients with CRC.

Laparoscopic Surgery for Rectal Cancer

Short-term Outcomes (Table 3)

Some trials report no difference in the rate of perioperative complications such as anastomotic leakage, wound infection, ileus, abscess, or bleeding comparing LAC and OC for rectal cancer, although anastomotic leakage has a slightly higher incidence than other complications. Since anastomotic leakage is a highly morbid complication in some patients, a protecting stoma is still recommended in low anterior resection regardless of the surgical procedure used, according to some studies. Anastomotic leakage has a negative prognostic impact for local recurrence after restorative resection of rectal carcinoma. Therefore, if the anastomotic leakage rate in LAC for rectal cancer is higher than that for OC, LAC should be regarded as an unacceptable treatment. The rate of anastomotic leakage in laparoscopic rectal cancer surgery ranged between 1 and 17% in the literature and was most commonly reported to be approximately 10%. All comparative studies and RCTs reported no statistically significant difference in anastomotic leakage rate between LAC and OC for sphincter-saving rectal cancer resection. Therefore, laparoscopic low anterior resection is considered as an acceptable therapeutic alternative.

Long-term Outcomes (Table 4)

The oncologic outcome of surgery for rectal cancer has substantially improved due to the introduction of total mesorectal excision in the Western world. Whether LAC can allow the conduct of an adequate total mesorectal excision is an important concern in assessing the use of LAC in patients with rectal cancer. Accordingly, three multicenter trials (CLASSIC trial, COREAN trial and COLOR trial) have been conducted to examine this question.

Only the CLASICC trial has completed all analyses and reported five-year survival data (Table 3). In this trial all participating surgeons (27 centers and 32 surgeons) were required to have completed 20 laparoscopic colorectal resections before enrolling in the study. The adequacy of this opera-
The data from this trial may be biased in an intention-to-treat analysis. The conversion rate was 45% in the initial phase and declined to 15% in the last year of the study. However, at five years of follow-up after surgery, local recurrence rates were similar in the two groups (LAC 9.4%, OC 7.6%). No differences were found between LAC and OC in terms of anastomotic leakage (LAC 7%, OC 10%), five-year disease-free survival (LAC 53.2%, OC 52.1%) and five-year OS (LAC 60.3%, OC 52.9%). Additionally, several other trials recruited a small number of patients, but found no statistically significant difference in the disease-free survival and overall survival rate in patients undergoing LAC and those undergoing OC.

In 2013, the COLOR II study group published short-term outcomes of a phase three trial undertaken in 30 tertiary hospitals in eight countries. Patients with a single rectal cancer within 15 cm of the anal verge were recruited. This is the largest RCT to compare LAC (n = 739) with OC (n = 364). Similar to the results reported for colon cancer, LAC for rectal cancer is superior for short-term outcomes in comparison to OC. The morbidity (LAC 40%, OC 37%, P = 0.424) and mortality (LAC 1%, OC 2%, P = 0.409) within 28 days of surgery were also similar. The conversion rate was 16%, equivalent to the most recent data. Anastomotic leakage rates were similar between the two groups (LAC 13%, OC 10%, P = 0.462). These rates are in the same range as those reported from the CLASICC trial (7% and 10%, respectively) whereas lower rates were reported by Kang et al. and Morino et al. This trial is still ongoing. Locoregional recurrence rates, which is the primary endpoint, have not been reported as of early 2014. In 2010, the COREAN trial was published. It was the first RCT comparing LAC (n = 170) with OC (n = 170) for middle or lower rectal cancers after neoadjuvant chemoradiotherapy. They reported a 1.2% conversion rate and a 1.2% anastomotic leakage rate (vs. OC 0%; not significant). This trial included seven surgeons who treated more than 200 patients with rectal cancer annually.

Table 3. Randomized clinical trials of laparoscopic rectal surgery (short-term outcomes)

<table>
<thead>
<tr>
<th>Randomized Clinical Trial</th>
<th>No. of Patients</th>
<th>Tumor Location</th>
<th>Conversion Rate (%)</th>
<th>Follow up (Months)</th>
<th>Operative time† (min)</th>
<th>Blood loss† (ml)</th>
<th>Harvested nodes†</th>
<th>Leakage Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIC5) 2005</td>
<td>253</td>
<td>Rs, Ra, Rb</td>
<td>34</td>
<td>563</td>
<td>LAC: 386 (135-220)</td>
<td>NA</td>
<td>NA</td>
<td>LAC: 186 (135-220)</td>
</tr>
<tr>
<td>Braga13) 2007</td>
<td>83</td>
<td>≤15 cm from AV</td>
<td>7.7</td>
<td>536</td>
<td>LAC: 242 (72)</td>
<td>LAC: 13.8</td>
<td>NA</td>
<td>LAC: 10.8</td>
</tr>
<tr>
<td>Lujan14) 2009</td>
<td>86</td>
<td>≤11 cm from AV</td>
<td>7.9</td>
<td>7.2</td>
<td>LAC: 193.7 (45.4)</td>
<td>NA</td>
<td>LAC: 12 (7.9)</td>
<td>LAC: 9.6 (7.9)</td>
</tr>
<tr>
<td>COREAN11) 2010</td>
<td>101</td>
<td>≤11 cm from AV</td>
<td>7.9</td>
<td>1.2</td>
<td>LAC: 344.9 (55.4)</td>
<td>NA</td>
<td>LAC: 12 (7.9)</td>
<td>LAC: 9.6 (7.9)</td>
</tr>
<tr>
<td>COLOR II92) 2013</td>
<td>739</td>
<td>≤15 cm from AV</td>
<td>17</td>
<td>17</td>
<td>LAC: 391 (183-900)</td>
<td>NA</td>
<td>LAC: 12 (7.9)</td>
<td>LAC: 9.6 (7.9)</td>
</tr>
</tbody>
</table>

LAC, laparoscopic-assisted colorectal surgery; OC, open colorectal surgery; Rs, rectosigmoid; Ra, rectum above the peritoneal reflection; Rb, rectum below the peritoneal reflection; AV, anal verge; NA, not available; †, values are mean (SD or Range); ¶, p < 0.01; N.S., not significant.
leakage rate in patients who underwent anterior resection was 8.3%. However, we should pay attention to that these laparoscopic surgery were carried out by expert surgeons in high-volume centers and that high-risk patients were excluded in the study. In spite of this consideration, these data suggest that the outcomes are close to those expected in general clinical practice.

In recent years, there have been an increasing number of reports of LAC for rectal cancer, where short-term outcomes have improved. Lateral lymph node dissection by laparoscopic surgery might improve the long-term outcomes, but there is no report on this issue to date. Several large multicenter RCTs including the multinational COLOR II and American College of Surgeons Oncology Group Z6051 trial focusing on long-term survival, completely independent from the CLASSIC trials, are now under way. These studies will elucidate the short-term advantages and long-term oncologic outcomes of LAC for rectal cancer.

Conclusion

In this article, we have reviewed recent advancements in the field of laparoscopic treatment for CRC. LAC has demonstrated to have short-term benefits comparable to open surgery and also demonstrated to be as safe and efficacious as open surgery. Laparoscopic surgery for CRC is becoming more widely utilized, aiming at the use of less invasive techniques in the future. However, surgeons should be aware of that all clinical trials were performed in high-volume centers with experienced laparoscopic surgeons. Accordingly, super-expertise in laparoscopic surgery might be required to achieve these excellent outcomes. Further validation studies of the safety and oncological outcomes for laparoscopic surgery for CRC are warranted.

Acknowledgement

We appreciate the dedicated support from Jinko Kobayashi at Aizu Medical Center FMU.

Conflict of Interest Disclosure

Authors declare no conflict of interest in preparing this article.

References

study of short- and long-term outcomes of laparo-
soscopic palliative resection for incurable, symptom-
atic stage IV colorectal cancer in Japan. J Gastro-

sion of the feasibility of laparoscopic resection of
the primary tumor in patients with stage IV colon
cancer with early and advanced disease: the short-
and long-term outcomes at a single institution.

laparoscopic resection of primary tumor for incur-
able stage IV colorectal cancer: a large multi-

epithelial and stromal genomic instability in
background colorectal mucosa of sporadic colorec-

Optimizing surgical care of colon cancer in the old-

40. Higuchi T, Sugihara K: Complete mesocolic exci-

41. West NP, Morris EJ, Rotimi O, et al. Pathology
grading of colon cancer surgical resection and its
association with survival: a retrospective obser-

42. West NP, Kobayashi H, Takahashi K, et al. Under-
standing optimal colonic cancer surgery: comparison
of Japanese D3 resection and European complete
mesoscopic excision with central vascular ligation.

review of sentinel lymph node mapping procedure

sentinel node mapping for colorectal cancer using

45. Laurent C, Leblanc F, Gineste C, et al. Laparo-
soscopic approach in surgical treatment of rectal

Increased local recurrence and reduced sur-
vival from colorectal cancer following anastomotic

47. Law WL, Lee YM, Choi HK, et al. Laparoscopic
and open anterior resection for upper and mid rec-

soscopic versus open surgery for extraperitoneal rec-

mesorectal excision (TME) with laparoscopic ap-

50. Pugliese R, Di Lernia S, Sansonna F, et al. Re-
results of laparoscopic anterior resection for rectal
adenocarcinoma: retrospective analysis of 157 cases.

51. Kim SH, Park IJ, Jho YG, et al. Laparoscopic re-
section of rectal cancer: a comparison of surgical
and oncologic outcomes between extraperitoneal

52. Ng KH, Ng DC, Cheung HY, et al. Laparoscopic
resection for rectal cancers: lessons learned from

53. Heald RJ, Husband EM, Ryall RD. The mesorec-
tum in rectal cancer surgery—an clue to pelvic

54. Leung KL, Kwok SF, Lau WY, et al. Laparosco-
ic-assisted abdominoperineal resection for low rec-

55. Aziz O, Constantinides V, Tekkis PP, et al. Laparo-
soscopic versus open surgery for rectal cancer: a

56. Ng SS, Lee JF, Yiu RY, et al. Laparoscopic-assist-
ed versus open total mesorectal excision with anal
sphincter preservation for mid and low rectal

57. Jayne DG, Thorpe HC, Copeland J, et al. Five-
year follow-up of the Medical Research Council
CLASICC trial of laparoscopically assisted versus

58. Park JS, Choi GS, Jun SH, et al. Long-term out-
comes after laparoscopic surgery versus open sur-
gery for rectal cancer: a propensity score analysis.

versus open surgery for stage I rectal cancer:

60. van der Pas MH, Haghlin E, Cuesta MA, et al.
Laparoscopic versus open surgery for rectal cancer
(COLOR II): short-term outcomes of a ran-
domised, phase 3 trial. Lancet Oncol, 14 : 210-
218, 2013.
