LOCAL APPLICATION OF NUCLEUS PULPOSUS INDUCES EXPRESSION OF P2X₃ IN RAT DORSAL ROOT GANGLION CELLS

KAORU TAKAHASHI SATO¹, KOICHIRO SATOH², MIHO SEKIGUCHI², SHIN-ICHI KIKUCHI², SHIN-ICHI KONNO², MASAHIRO MURAKAWA¹, BJÖRN RYDEVIK³ and KJELL OLMARKER⁴

¹Department of Anesthesiology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan, ²Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan, ³Department of Orthopaedic Surgery, University of Gothenburg, SE-405-30 Gothenburg, Sweden, and ⁴Musculoskeletal research, Department of Medical chemistry and Cell biology, University of Gothenburg, SE-405-30 Gothenburg, Sweden

(Received September 8, 2011, accepted December 12, 2011)

Abstract: The P2X₃ receptor is a ligand-gated cation channel that is activated by extracellular adenosine triphosphate (ATP) found in the dorsal root, trigeminal and nodose ganglia. It is one of the receptors transmitting nociceptive information of injuries and inflammation of the periphery by endogenous ATP released from damaged cells. The present study was performed in order to evaluate if there was an increased expression of P2X₃-immunoreactivity in dorsal root ganglion (DRG) neurons after experimental disc herniation. There were four groups: exposure of the left L₄ dorsal root ganglion and incision of the L₄-L₅ disc, exposure and slight displacement of the left L₄ dorsal ganglion, sham exposure of the L₄ dorsal root ganglion, and normal. Seven days after surgery, the DRG’s were collected, sectioned and stained immunohistochemically for the P2X₃ receptor. The expression of P2X₃ increased significantly following incision of the L₄-L₅ disc compared to the normal group. Sham surgery induced a minor, although statistically significant increase. Mechanical displacement did not induce any increased expression of the receptors. The study demonstrates that expression of the P2X₃ receptors in the DRG may be induced by local application of nucleus pulposus. This may increase our understanding of the pathophysiologic mechanisms related to disc herniation and sciatica.

Key words: P2X₃, disc herniation, nucleus pulposus, dorsal root ganglion

INTRODUCTION

Disc herniation is well known to induce pain after rupture of the annulus fibrosus. Symptoms are induced by both mechanical compression and chemical inflammation of the nerve root. The leakage of nucleus pulposus material can induce morphological and functional changes in the nerve root⁵. The gene expression changes induced by the mechanical and chemical factors differ at 7 days after surgery in the rat models⁶. However, the roles of each factor to induce symptoms are still incompletely known.

The P2X receptors were recently suggested to mediate nociceptive information of injury and inflammation, in particular the P2X₃ receptor⁷. The activation of the receptor is based on peripheral adenosine triphosphate (ATP) released from injured cells. ATP has also been suggested to be involved in the induction of mechanical and ther-
mal hyperalgesia in experimental models. The aim of this study was to investigate the changes in P2X3 receptor expression in the adjacent dorsal root ganglion (DRG) following experimental disc herniation in rats using immunohistochemical staining.

MATERIAL AND METHOD

Twenty female Sprague-Dawley rats with an average body weight of 225 g were used. The animals were housed in groups of four with free access to food (B & K Rat/mouse standard, BeeKay feed & beddings, Sollentuna, Stockholm) and tap water. Temperature was kept at 21°C, the light schedule was 12 hours daylight starting at 6:00 AM and 12 hours darkness starting at 6:00 PM, and humidity was kept at 50%. The experimental protocol was approved by the local animal ethics committee.

The animals were divided into four groups (n=5 in each group). The rats were anesthetized with an intraperitoneal injection of 0.4 ml of diazepam : pentobarbital : saline (1 : 1 : 2). Disc herniation was induced according to a previously published protocol as below.

Disc Incision group (n=5). The left facet joint between L4 and L5 was removed and the L4 DRG and the L5 nerve root, including the intervertebral disc between L4 and L5, were visualized. The L4-L5 intervertebral disc was incised using a 0.4-mm diameter injection needle. Herniation of the nucleus pulposus into the spinal canal was facilitated by injecting a small amount of air into the center of the disc through the needle.

Nerve Root Displacement group (n=5). After exposing the L4 DRG, a 0.4-mm diameter injection needle was placed between the ganglion and the pedicle of L4, i.e., lateral to the ganglion, and the needle was then gently forced medially to the former location of the center of the ganglion. The needle was then fixed in this position by gently securing it into the underlying vertebral body of L4. This resulted in a slight sustained displacement of the ganglion with a subsequent elongation of the L4 nerve root.

Sham Exposure group (n=5). After removing the L4/L5 facet joint and visualizing the intervertebral disc, no other procedure was performed in this group. The spinal muscles were sutured and the skin closed by metal clips.

Normal animal group (n=5). No surgical procedure was performed as the control.

TISSUE PROCESSING

All rats were deeply anesthetized with an overdose of pentobarbital and were perfused with 200 ml saline followed by 200 ml paraformaldehyde (4% in 0.2 M phosphate buffer) through the aorta on day 7 after the surgery. The L4 DRG and spinal cord were dissected, post fixed in 4% paraformaldehyde (2 h at 4°C), transferred to 10% sucrose in 0.1 M Phosphate buffer (PB) (2 h at 4°C) and then to 20% sucrose in 0.1 M PB (overnight at 4°C). The tissues were then embedded in O.C.T.-compound (Histolab Products AB, Västra Frölunda, Sweden), frozen quickly and stored at −80°C. Transverse sections through the DRG (8 μm thickness) were obtained using a cryostat and thaw-mounted onto Superfrost microscope slides (BDH, Poole, UK).

The sections were incubated with the following reagents, goat anti-P2X3 receptor antibody (Santa Cruz Biotechnology Inc, California, U.S.A.) over night, and biotinylated rabbit anti-goat IgG antibody (DACO, Copenhagen, Denmark) for 1 hour (all reagents were diluted in phosphate-buffered saline containing 0.2% Triton X-100 and normal rabbit serum at 10%). Positive signals were obtained by the reaction with avidin-biotin-peroxidase complex reagent (DACO, Copenhagen, Denmark) and 3,3’-diaminobenzidine tetra hydrochloride (Sigma, Stockholm, Sweden).

The number of labeled neurons per section was counted to determine the magnitude of P2X3 receptor expression. Four sections in each rat of the DRG were selected randomly. The average number of labeled neurons was obtained for each rat across the different tissue sections and recorded as a ratio to the total cell population. The mean value ±SD was determined for each group. Only neurons with clearly visible nuclei were counted as positive for P2X3 receptor. All analyses were performed on coded sections by an unbiased observer. ANOVA with Fisher’s Protected Least Significant Difference test were used for the statistical analysis.

RESULTS

The P2X3 receptor immunoreactive cells were found in small sized DRG neurons (Figure 1). The expression of P2X3 receptors increased in the disc incision and sham groups at day 7 after surgery compared with the normal group (p<0.05). Especially in the disc incision group, it was about five times higher compared to the normal group (p<0.05) (Figure 2). There was no significant dif-
DISCUSSION

P2X receptors has been cloned and categorized into seven types (P2X1-P2X7). Among these seven subtypes of purinoreceptors, the P2X3 receptor is one of the receptors transmitting nociceptive information of injuries and inflammation of the periphery by endogenous ATP released from damaged tissue. In inflammatory conditions, the P2X3 receptor is sensitized and can be evoked by low concentration of ATP. Recently it was seen that administration of ATP and its analogues intracellally induce mechanical and thermal hyperalgesia as well as pain related behaviors in the rats. Activation of the P2X3 receptor at the spinal cord level has also been linked to a release of glutamate with a subsequent induction of the N-methyl-D-aspartate (NMDA) receptor. However, in models on peripheral nerve injury (e.g. sciatic nerve axotomy and sciatic nerve ligation or ligation), both up and down regulation of P2X3 have been observed. Tsuzuki et al. demonstrated that the P2X3 receptor in the DRG was up regulated when the injured axons were intact, whereas it was down regulated following axotomy. It is also reported that both spinal and peripheral P2X3/P2X2/3 receptor have contributions to nociception in several animal models (e.g. spinal nerve ligation, sciatic nerve ligation, Freund’s adjuvant or carrageenan injection) using a selective P2X3/P2X2/3 receptor antagonist.

In addition, P2X3/P2X2/3 receptors dependent cytosolic phospholipase A2 activity in primary sensory neurons is a key event in neuropathic pain. In this study, incision of annulus fibrosis induced a significant increase the P2X3 receptor expression in the DRG adjacent to the disc incision. This result may be interpreted that there are nerve terminals within the spinal canal that conduct pain sensation. Such receptors might probably be found on the surface of the annulus fibrosus, the membraneous coverings of nervous structures or periosteum. It seems likely that the herniation of nucleus pulposus may have induced activation of such nerve terminals and that this activation has induced an increase of P2X3 in the corresponding nerve cell body located in the adjacent DRG. How this activation has occurred, the mechanisms of activation and where such nerve terminals were located cannot be understood from the present study. The limitation of this study was to investigate only at 7 day after surgery because of the preliminary experiment.

Sham exposure of DRG also induced a slight increase in P2X3 expression that was found to be statistically different to the normal group. However, the increase induced by the sham exposure was not as pronounced as that for the incision group. The mechanisms for this increase cannot be fully understood but may be related to the surgery per se with increased inflammatory activation related to the wound healing process.

When harvesting DRG’s for analysis it was apparent that the displacement had induced a mechanical deformation and atrophy of the DRG.
is known that the membraneous coverings of the DRG and nerve roots have nerve endings. We therefore suspected that mechanical stimulation of the DRG might elicit the expression of P2X3 reactive cells. However one may assume that the synthesis rate in such deformed DRG’s may be impaired and that this may be one reason for the absence of an increase of P2X3 positive cells in the displacement group. This can, however, not be validated by the present study. Another reason for the absent response in P2X3 activation after mechanical deformation may be the absence of nucleus pulposus. This is, however, also difficult to determine in the present experimental set-up.

In conclusion, it seems evident that the mere incision of annulus fibrosus induces an increase in P2X3 receptor expression in the adjacent DRG. This may suggest that there are nerve terminals on the intervertebral disc or other structures in the spinal canal and that rupture of the annulus fibrosus with leakage of nucleus pulposus may induce pain. Continued studies in the field may increase our knowledge regarding the basic pathophysiologic events related to the herniation of nucleus pulposus.

REFERENCES

19. Tsuda M, Hasegawa S, Inoue K. P2X receptors-